User Tools

Site Tools


monotonicity

This is an old revision of the document!


Monotonicity

There are all sorts of kinds of monotonicity for various PDEs. Generally, one uses monotonicity together with an $\epsilon$-regularity result to get strong restriction on the structure of the singularity set. The most basic monotonicity results take the form $E(f, S_r) \le CE(f, S_R)$ for $E$ some (renormalized) energy of a solution $f$ to some PDE on spheres of radius $r < R$ and $C$ not dependent on $r, R$. A monotonicity of this sort exists for harmonic maps ($d^* d f = 0$) with $E(f,\Omega) = r^{2-n} \|df\|_{L^2(\Omega)}^2$ and Yang-Mills connections $(d_A^* F_A = 0$) with $E(A, \Omega) = r^{4-n} \|F_A\|^2_{L^2(\Omega)}$.

monotonicity.1686155082.txt.gz · Last modified: by spencer