conformal_change_formulae
This is an old revision of the document!
Suppose throughout that $M^n$ is a manifold with two conformal Riemannian metrics $\widetilde{g} = e^{2\phi}g$.
Volume form
The volume form is a tensor, so it suffices to work pointwise. At a point $p$, in normal coordinates $(x^1, \ldots, x^n)$ for $g$ at $p$ one has $(g_p)_{ij} = \delta_{ij}$, whence $(\widetilde{g})_{ij} = e^{2\phi}\delta_{ij}$. Thus at $p$, \begin{align*} \mathrm{vol}(\widetilde{g}) &= \sqrt{(e^{2\phi})^n} \mathrm{d}x^1 \wedge \cdots \wedge \mathrm{d}x^n \\ &= e^{\phi n} \mathrm{vol}(g). \end{align*}
conformal_change_formulae.1661967814.txt.gz · Last modified: by spencer
