User Tools

Site Tools


spin7_vanishing

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
spin7_vanishing [2023/05/12 10:59] spencerspin7_vanishing [2023/05/15 10:32] (current) spencer
Line 19: Line 19:
  
 <WRAP center round todo 60%> <WRAP center round todo 60%>
-**Proof:** Elided, for now+**Proof:** We have 
 +\begin{align*} 
 +D &= c_b \nabla_b \\ 
 +&= -\frac{1}{8} c_a c_a c_b \nabla_b \\ 
 +&= \frac{1}{8} D - \frac{1}{8} \sum_{a \neq b} c_a c_a c_b \nabla_b 
 +\end{align*} 
 +so 
 +$$D = -\frac{1}{7} \sum_{a \neq b} c_a c_a c_b \nabla_b$$
 </WRAP> </WRAP>
 +
  
 **Lemma 2:** If $\psi \in \Gamma(S_7^+ \otimes E)$, there exist 7 sections $\psi_i \in \Gamma(S_1^+ \otimes E)$ such that $\psi = c(\gamma^i) \psi_i$. **Lemma 2:** If $\psi \in \Gamma(S_7^+ \otimes E)$, there exist 7 sections $\psi_i \in \Gamma(S_1^+ \otimes E)$ such that $\psi = c(\gamma^i) \psi_i$.
Line 50: Line 58:
 **Lemma 3:** $\ker D = \ker D^7 \cap \ker D^{21}$, the kernels being in $\Gamma(S^+ \otimes E)$. **Lemma 3:** $\ker D = \ker D^7 \cap \ker D^{21}$, the kernels being in $\Gamma(S^+ \otimes E)$.
  
 +We have $|D\psi|^2 = |D^7 \psi|^2 + |D^{21}\psi|^2 + 2\langle D^7\psi, D^{21}\psi\rangle$.
 +It suffices (by the assumption that Clifford multiplication commutes with derivatives) to consider $\psi \in S^+_1$; but then the cross term vanishes a priori
 <WRAP center round todo 60%> <WRAP center round todo 60%>
-**Proof:** Elided, for now+do this more carefully later
 </WRAP> </WRAP>
  
spin7_vanishing.1683903557.txt.gz · Last modified: by spencer