spin7_vanishing
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| spin7_vanishing [2023/05/12 10:59] – spencer | spin7_vanishing [2023/05/15 10:32] (current) – spencer | ||
|---|---|---|---|
| Line 19: | Line 19: | ||
| <WRAP center round todo 60%> | <WRAP center round todo 60%> | ||
| - | **Proof: | + | **Proof: |
| + | \begin{align*} | ||
| + | D &= c_b \nabla_b \\ | ||
| + | &= -\frac{1}{8} c_a c_a c_b \nabla_b \\ | ||
| + | &= \frac{1}{8} D - \frac{1}{8} \sum_{a \neq b} c_a c_a c_b \nabla_b | ||
| + | \end{align*} | ||
| + | so | ||
| + | $$D = -\frac{1}{7} \sum_{a \neq b} c_a c_a c_b \nabla_b$$ | ||
| </ | </ | ||
| + | |||
| **Lemma 2:** If $\psi \in \Gamma(S_7^+ \otimes E)$, there exist 7 sections $\psi_i \in \Gamma(S_1^+ \otimes E)$ such that $\psi = c(\gamma^i) \psi_i$. | **Lemma 2:** If $\psi \in \Gamma(S_7^+ \otimes E)$, there exist 7 sections $\psi_i \in \Gamma(S_1^+ \otimes E)$ such that $\psi = c(\gamma^i) \psi_i$. | ||
| Line 50: | Line 58: | ||
| **Lemma 3:** $\ker D = \ker D^7 \cap \ker D^{21}$, the kernels being in $\Gamma(S^+ \otimes E)$. | **Lemma 3:** $\ker D = \ker D^7 \cap \ker D^{21}$, the kernels being in $\Gamma(S^+ \otimes E)$. | ||
| + | We have $|D\psi|^2 = |D^7 \psi|^2 + |D^{21}\psi|^2 + 2\langle D^7\psi, D^{21}\psi\rangle$. | ||
| + | It suffices (by the assumption that Clifford multiplication commutes with derivatives) to consider $\psi \in S^+_1$; but then the cross term vanishes a priori | ||
| <WRAP center round todo 60%> | <WRAP center round todo 60%> | ||
| - | **Proof:** Elided, for now | + | do this more carefully later |
| </ | </ | ||
spin7_vanishing.1683903557.txt.gz · Last modified: by spencer
