spin7_vanishing
Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| spin7_vanishing [2023/05/11 15:59] – created spencer | spin7_vanishing [2023/05/15 10:32] (current) – spencer | ||
|---|---|---|---|
| Line 12: | Line 12: | ||
| $$D^7 := \frac{1}{28} \sum_{j=1}^7 \sum_{b=1}^8 c(\gamma^j e_b) c(\gamma^j) \nabla_b \tag{2}$$ | $$D^7 := \frac{1}{28} \sum_{j=1}^7 \sum_{b=1}^8 c(\gamma^j e_b) c(\gamma^j) \nabla_b \tag{2}$$ | ||
| $$D^{21} := \frac{1}{56} \sum_{1 \le j < k \le 7} \sum_{b=1}^8 c(\gamma^{jk} e_b) c(\gamma^{jk}) \nabla_b \tag{3}$$ | $$D^{21} := \frac{1}{56} \sum_{1 \le j < k \le 7} \sum_{b=1}^8 c(\gamma^{jk} e_b) c(\gamma^{jk}) \nabla_b \tag{3}$$ | ||
| + | <WRAP center round info 60%> | ||
| + | Here we are working with the convention that for a skew operator $A$, we have $c(A) = \frac{1}{2} A_{ab} c_a c_b$. | ||
| + | </ | ||
| **Lemma 1:** $D = D^7 + D^{21}$ | **Lemma 1:** $D = D^7 + D^{21}$ | ||
| <WRAP center round todo 60%> | <WRAP center round todo 60%> | ||
| - | **Proof: | + | **Proof: |
| + | \begin{align*} | ||
| + | D &= c_b \nabla_b \\ | ||
| + | &= -\frac{1}{8} c_a c_a c_b \nabla_b \\ | ||
| + | &= \frac{1}{8} D - \frac{1}{8} \sum_{a \neq b} c_a c_a c_b \nabla_b | ||
| + | \end{align*} | ||
| + | so | ||
| + | $$D = -\frac{1}{7} \sum_{a \neq b} c_a c_a c_b \nabla_b$$ | ||
| </ | </ | ||
| + | |||
| **Lemma 2:** If $\psi \in \Gamma(S_7^+ \otimes E)$, there exist 7 sections $\psi_i \in \Gamma(S_1^+ \otimes E)$ such that $\psi = c(\gamma^i) \psi_i$. | **Lemma 2:** If $\psi \in \Gamma(S_7^+ \otimes E)$, there exist 7 sections $\psi_i \in \Gamma(S_1^+ \otimes E)$ such that $\psi = c(\gamma^i) \psi_i$. | ||
| + | Moreover, $c(\gamma^j) c(\gamma^m) \psi = -16 \delta_{jm} \psi$. | ||
| + | |||
| + | **Proof:** Essentially, | ||
| + | |||
| + | Suppose $j \neq k$. | ||
| + | Then | ||
| + | \begin{align*} | ||
| + | \langle c(\gamma^j) \psi, c(\gamma^k)\psi \rangle &= \frac{1}{4} \langle [c(\gamma^{jk}), | ||
| + | &= \frac{1}{4}\langle c(\gamma^{jk})c(\gamma^k) \psi, c(\gamma^k) \psi \rangle \\ | ||
| + | &= 0 | ||
| + | \end{align*} | ||
| + | since, for example, Clifford multiplication is skew-adjoint. | ||
| + | Note we used that $c(\gamma^{jk}) \psi = 0$. | ||
| + | Skew-adjointness gives that $c(\gamma^j) c(\gamma^m) \psi = 0$ if $j \neq m$. | ||
| + | |||
| + | For $j = k$ one requires an eigendecomposition of $\psi$. | ||
| + | It is a fact that the eigenvalues of $c(\gamma^k)$ acting on $S^+$ are $\pm 4i$ with multiplicity 1 for each sign and 0 with multiplicity 6. | ||
| + | Thus $\psi = \psi_{+} + \psi_{-} + \psi_0$ splits as a sum of eigenvectors for a fixed $k$. | ||
| + | However, $\psi_0 = 0$; | ||
| <WRAP center round todo 60%> | <WRAP center round todo 60%> | ||
| - | **Proof:** Elided, for now | + | Finish proof that zero part vanishes |
| </ | </ | ||
| + | Thus $\psi = \psi_+ + \psi_-$ and $c(\gamma^k)^2 \psi = (4i)^2 \psi_+ + (-4i)^2 \psi_{-} = -16\psi$. | ||
| **Lemma 3:** $\ker D = \ker D^7 \cap \ker D^{21}$, the kernels being in $\Gamma(S^+ \otimes E)$. | **Lemma 3:** $\ker D = \ker D^7 \cap \ker D^{21}$, the kernels being in $\Gamma(S^+ \otimes E)$. | ||
| + | We have $|D\psi|^2 = |D^7 \psi|^2 + |D^{21}\psi|^2 + 2\langle D^7\psi, D^{21}\psi\rangle$. | ||
| + | It suffices (by the assumption that Clifford multiplication commutes with derivatives) to consider $\psi \in S^+_1$; but then the cross term vanishes a priori | ||
| <WRAP center round todo 60%> | <WRAP center round todo 60%> | ||
| - | **Proof:** Elided, for now | + | do this more carefully later |
| </ | </ | ||
| - | **Lemma 4:** If $D^7 \psi = 0$ | + | **Lemma 4:** If $D^7 \psi = 0$ then $c(\gamma^j e_a) \nabla_a \psi_j = 0$ for all $j$ and $a$. |
| + | If $D^{21} \psi = 0$ then $c(\gamma^{jk} e_a) \nabla_a \psi_k = 0$ for all $j, k$ and $a$. | ||
| + | |||
| + | **Proof:** Compute: | ||
| + | |||
| + | \begin{align*} | ||
| + | 0 &= \frac{28^2}{16^2}|D^7 \psi|^2 \\ | ||
| + | &= \frac{1}{16^2} \langle c(\gamma^j e_a) c(\gamma^j) \nabla_a c(\gamma^m) \psi_m, c(\gamma^k e_b) c(\gamma^k) \nabla_b c(\gamma^\ell) \psi_\ell \rangle \\ | ||
| + | &= \langle c(\gamma^j e_a) \nabla_a \psi_j, c(\gamma^k e_b) \nabla_b \psi_k \rangle \\ | ||
| + | &= |c(\gamma^j e_a) \nabla_a \psi_j|^2 | ||
| + | \end{align*} | ||
| + | |||
| + | <WRAP center round tip 60%> | ||
| + | We know $\tau_{aj} := \nabla_a \psi_j \in S_1^+$ since $\nabla$ preserves the decomposition. | ||
| + | If it is non-zero, then $c(\gamma^k) \tau_{aj}$ span $S_7^+$ by Lemma 2. | ||
| + | So idea is $c(\gamma^j e_a)$, $c(\gamma^{jk} e_a)$ should span everything and in particular one of them should contain something in $S_7^+$, so this is our contradiction. | ||
| + | </ | ||
| + | |||
spin7_vanishing.1683835183.txt.gz · Last modified: by spencer
