User Tools

Site Tools


moser

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
moser [2025/11/07 11:54] spencermoser [2025/11/07 14:19] (current) – [Inhomogeneous Moser] spencer
Line 59: Line 59:
 (b+1)^2 (f \eta u^b, \eta u^{b+1}) &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}). (b+1)^2 (f \eta u^b, \eta u^{b+1}) &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}).
 \end{align*} \end{align*}
 +Thus we have
 +\begin{align*}
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\
 +S^{-1} \| u^{b+1}\|^2_{L^2(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le (2b+1) 4^{k+3} R^{-2} \| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 |((f - Vu) \eta u^b, \eta u^{b+1})| \\
 +\end{align*}
 +To approximate the inhomogeneity, note that at a point $p$ with $R = \frac{|p|}{4}$, then $\| f\|_{L^\infty(B_{2R})} \le C R^{-n}$ by hypothesis, so
 +\begin{align*}
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\
 +S^{-1} \| u^{b+1}\|^2_{L^{2n/(n-2)}(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le ((2b+1) 4^{k+3} R^{-2} + (b+1)^2 V^\infty)\| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 C R^{-n} \|u^{b+\frac{1}{2}}\|^2_{L^2(B_{k-1})} \\
 +\end{align*}
 +
 +To estimate the $\|u^{b + \frac{1}{2}}\|^2_2 = \| u\|^{2b+1}_{2b+1}$ term, we use the Holder inequality and the previous term in the iteration to bound the $L^{2b+2}$ norm:
 +$$
 + \| u\|_{2b+1} \le C\| u \|_{2b+2} (R^n)^{\frac{1}{(2b+1)(2b+2)}}.
 +$$
 +Thus with $p_k = 2b_k + 2 = 2 \left( \frac{n}{n-2} \right)^k$, it holds that
 +
 +\begin{align*}
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\
 +S^{-1} \| u\|^{p_k}_{L^{p_{k+1}}(B_k)} &\le ((p_k-1) 4^{k+3} R^{-2} + \frac{p_k^2}{4} V^\infty)\| u\|^{p_k}_{L^{p_k}(B_{k-1})} + C p_k^2 R^{\frac{n}{p_k} - n} \| u\|^{p_k-1}_{L^{p_k}(B_{k-1})} 
 +\end{align*}
 +
moser.1762534475.txt.gz · Last modified: by spencer