User Tools

Site Tools


moser

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
moser [2025/11/07 11:47] – [Moser from Agmon] spencermoser [2025/11/07 14:19] (current) – [Inhomogeneous Moser] spencer
Line 14: Line 14:
 Let $\eta$ be some cutoff function to be chosen later $b$ any number, and consider Let $\eta$ be some cutoff function to be chosen later $b$ any number, and consider
 \begin{align*} \begin{align*}
-    (-\Delta u, \eta^2 u^{2b} u) &= (\nabla u, u^b \eta \nabla (\eta u^{b+1}) + \eta u^{b+1} \nabla (\eta u^b)) \\+    (\Delta u, \eta^2 u^{2b} u) &= (\nabla u, u^b \eta \nabla (\eta u^{b+1}) + \eta u^{b+1} \nabla (\eta u^b)) \\
     &= (u^b \eta \nabla u,  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\     &= (u^b \eta \nabla u,  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\
     &= \|\nabla (\eta u^{b+1})\|^2 - (u \nabla (\eta u^b),  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\     &= \|\nabla (\eta u^{b+1})\|^2 - (u \nabla (\eta u^b),  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\
Line 30: Line 30:
 \end{align*} \end{align*}
  
-==== Moser from Agmon ====+===== Moser from Agmon =====
  
 \begin{align*} \begin{align*}
Line 50: Line 50:
 Thus Thus
 $$ $$
- \| u\|_{L^\infty(B_R)} \le \prod_{j=1}^k S^{1/p_j} p_j^{1/p_j} (4^{j+3} R^{-2} + p_j \|V\|_\infty)^{1/p_j} \|u\|_{L^2(B_{2R})} \le C (R^{-2} + \|V\|_\infty)^{n/2} \| u\|_{L^2(B_{2R})}+ \| u\|_{L^\infty(B_R)} \le \lim_{k \to \infty} \|u\|_{L^{p_{k+1}}(B_k)} \le \prod_{j=1}^k S^{1/p_j} p_j^{1/p_j} (4^{j+3} R^{-2} + p_j \|V\|_\infty)^{1/p_j} \|u\|_{L^2(B_{2R})} \le C (R^{-2} + \|V\|_\infty)^{n/2} \| u\|_{L^2(B_{2R})}
 $$ $$
 +
 +===== Inhomogeneous Moser =====
 +
 +In the event that $u$ solves an inhomogeneous equation $(\Delta + V)u = f$, then Agmon's identity reads
 +\begin{align*}
 +(b+1)^2 (f \eta u^b, \eta u^{b+1}) &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}).
 +\end{align*}
 +Thus we have
 +\begin{align*}
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\
 +S^{-1} \| u^{b+1}\|^2_{L^2(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le (2b+1) 4^{k+3} R^{-2} \| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 |((f - Vu) \eta u^b, \eta u^{b+1})| \\
 +\end{align*}
 +To approximate the inhomogeneity, note that at a point $p$ with $R = \frac{|p|}{4}$, then $\| f\|_{L^\infty(B_{2R})} \le C R^{-n}$ by hypothesis, so
 +\begin{align*}
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\
 +S^{-1} \| u^{b+1}\|^2_{L^{2n/(n-2)}(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le ((2b+1) 4^{k+3} R^{-2} + (b+1)^2 V^\infty)\| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 C R^{-n} \|u^{b+\frac{1}{2}}\|^2_{L^2(B_{k-1})} \\
 +\end{align*}
 +
 +To estimate the $\|u^{b + \frac{1}{2}}\|^2_2 = \| u\|^{2b+1}_{2b+1}$ term, we use the Holder inequality and the previous term in the iteration to bound the $L^{2b+2}$ norm:
 +$$
 + \| u\|_{2b+1} \le C\| u \|_{2b+2} (R^n)^{\frac{1}{(2b+1)(2b+2)}}.
 +$$
 +Thus with $p_k = 2b_k + 2 = 2 \left( \frac{n}{n-2} \right)^k$, it holds that
 +
 +\begin{align*}
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\
 +S^{-1} \| u\|^{p_k}_{L^{p_{k+1}}(B_k)} &\le ((p_k-1) 4^{k+3} R^{-2} + \frac{p_k^2}{4} V^\infty)\| u\|^{p_k}_{L^{p_k}(B_{k-1})} + C p_k^2 R^{\frac{n}{p_k} - n} \| u\|^{p_k-1}_{L^{p_k}(B_{k-1})} 
 +\end{align*}
 +
moser.1762534073.txt.gz · Last modified: by spencer