moser
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| moser [2025/11/07 11:47] – [Moser from Agmon] spencer | moser [2025/11/07 14:19] (current) – [Inhomogeneous Moser] spencer | ||
|---|---|---|---|
| Line 14: | Line 14: | ||
| Let $\eta$ be some cutoff function to be chosen later $b$ any number, and consider | Let $\eta$ be some cutoff function to be chosen later $b$ any number, and consider | ||
| \begin{align*} | \begin{align*} | ||
| - | (-\Delta u, \eta^2 u^{2b} u) &= (\nabla u, u^b \eta \nabla (\eta u^{b+1}) + \eta u^{b+1} \nabla (\eta u^b)) \\ | + | (\Delta u, \eta^2 u^{2b} u) &= (\nabla u, u^b \eta \nabla (\eta u^{b+1}) + \eta u^{b+1} \nabla (\eta u^b)) \\ |
| &= (u^b \eta \nabla u, \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\ | &= (u^b \eta \nabla u, \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\ | ||
| &= \|\nabla (\eta u^{b+1})\|^2 - (u \nabla (\eta u^b), \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\ | &= \|\nabla (\eta u^{b+1})\|^2 - (u \nabla (\eta u^b), \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\ | ||
| Line 30: | Line 30: | ||
| \end{align*} | \end{align*} | ||
| - | ==== Moser from Agmon ==== | + | ===== Moser from Agmon ===== |
| \begin{align*} | \begin{align*} | ||
| Line 50: | Line 50: | ||
| Thus | Thus | ||
| $$ | $$ | ||
| - | \| u\|_{L^\infty(B_R)} \le \prod_{j=1}^k S^{1/p_j} p_j^{1/p_j} (4^{j+3} R^{-2} + p_j \|V\|_\infty)^{1/ | + | \| u\|_{L^\infty(B_R)} \le \lim_{k \to \infty} \|u\|_{L^{p_{k+1}}(B_k)} \le \prod_{j=1}^k S^{1/p_j} p_j^{1/p_j} (4^{j+3} R^{-2} + p_j \|V\|_\infty)^{1/ |
| $$ | $$ | ||
| + | |||
| + | ===== Inhomogeneous Moser ===== | ||
| + | |||
| + | In the event that $u$ solves an inhomogeneous equation $(\Delta + V)u = f$, then Agmon' | ||
| + | \begin{align*} | ||
| + | (b+1)^2 (f \eta u^b, \eta u^{b+1}) &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}). | ||
| + | \end{align*} | ||
| + | Thus we have | ||
| + | \begin{align*} | ||
| + | (2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\ | ||
| + | S^{-1} \| u^{b+1}\|^2_{L^2(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le (2b+1) 4^{k+3} R^{-2} \| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 |((f - Vu) \eta u^b, \eta u^{b+1})| \\ | ||
| + | \end{align*} | ||
| + | To approximate the inhomogeneity, | ||
| + | \begin{align*} | ||
| + | (2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\ | ||
| + | S^{-1} \| u^{b+1}\|^2_{L^{2n/ | ||
| + | \end{align*} | ||
| + | |||
| + | To estimate the $\|u^{b + \frac{1}{2}}\|^2_2 = \| u\|^{2b+1}_{2b+1}$ term, we use the Holder inequality and the previous term in the iteration to bound the $L^{2b+2}$ norm: | ||
| + | $$ | ||
| + | \| u\|_{2b+1} \le C\| u \|_{2b+2} (R^n)^{\frac{1}{(2b+1)(2b+2)}}. | ||
| + | $$ | ||
| + | Thus with $p_k = 2b_k + 2 = 2 \left( \frac{n}{n-2} \right)^k$, it holds that | ||
| + | |||
| + | \begin{align*} | ||
| + | (2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\ | ||
| + | S^{-1} \| u\|^{p_k}_{L^{p_{k+1}}(B_k)} &\le ((p_k-1) 4^{k+3} R^{-2} + \frac{p_k^2}{4} V^\infty)\| u\|^{p_k}_{L^{p_k}(B_{k-1})} + C p_k^2 R^{\frac{n}{p_k} - n} \| u\|^{p_k-1}_{L^{p_k}(B_{k-1})} | ||
| + | \end{align*} | ||
| + | |||
moser.1762534073.txt.gz · Last modified: by spencer
