User Tools

Site Tools


moser

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
moser [2025/11/06 16:22] – [Agmon's identity] spencermoser [2025/11/07 14:19] (current) – [Inhomogeneous Moser] spencer
Line 14: Line 14:
 Let $\eta$ be some cutoff function to be chosen later $b$ any number, and consider Let $\eta$ be some cutoff function to be chosen later $b$ any number, and consider
 \begin{align*} \begin{align*}
-    (-\Delta u, \eta^2 u^{2b} u) &= (\nabla u, u^b \eta \nabla (\eta u^{b+1}) + \eta u^{b+1} \nabla (\eta u^b)) \\+    (\Delta u, \eta^2 u^{2b} u) &= (\nabla u, u^b \eta \nabla (\eta u^{b+1}) + \eta u^{b+1} \nabla (\eta u^b)) \\
     &= (u^b \eta \nabla u,  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\     &= (u^b \eta \nabla u,  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\
     &= \|\nabla (\eta u^{b+1})\|^2 - (u \nabla (\eta u^b),  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\     &= \|\nabla (\eta u^{b+1})\|^2 - (u \nabla (\eta u^b),  \nabla (\eta u^{b+1})) + (\eta u^b \nabla u, u \nabla (\eta u^b)) \\
Line 27: Line 27:
 We can further manipulate the signed term in this expression, by passing $u$ through the derivative to get a term entirely in derivatives of $\eta$ and $\eta u^{b+1}$: We can further manipulate the signed term in this expression, by passing $u$ through the derivative to get a term entirely in derivatives of $\eta$ and $\eta u^{b+1}$:
 \begin{align*} \begin{align*}
-0 &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}, u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}).+0 &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}). 
 +\end{align*} 
 + 
 +===== Moser from Agmon ===== 
 + 
 +\begin{align*} 
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) - (b+1)^2 (V \eta u^{b+1}, \eta u^{b+1}) \\ 
 +&\le \| u^{b+1} \eta\|^2 + 2b( \| \nabla (\eta u^{b+1})\|^2 + \| u^{b+1} \nabla \eta\|^2) + (b+1)^2 \|V\|_\infty \| \eta u^{b+1} \|^2 \\ 
 +\|\nabla (\eta u^{b+1}) \|^2 &\le ((2b+1) 4^{k+3} R^{-2} + (b+1)^2 \|V\|_\infty) \| u^{b+1}\|^2_{L^2(B_{k-1})} 
 +\end{align*} 
 +Now use a Sobolev embedding, 
 +$$ 
 +\| u^{b+1}\|^2_{L^{2n/(n-2)}(B_k)} \le \| \eta u^{b+1} \|^2_{2n/(n-2)} \le S^{-1} \| \nabla (\eta u^{b+1})\|^2. 
 +$$ 
 + 
 +Thus with $p = 2(b+1)$, 
 +$$ 
 + \| u\|_{L^{p n/(n-2)}(B_k)} \le S^{1/p} p^{1/p} (4^{k+3} R^{-2} + p \|V\|_\infty)^{1/p} \|u\|_{L^p(B_{k-1})}. 
 +$$ 
 + 
 +Now set $p_1 = 2$ and $p_k = n/(n-2) p_{k-1}$. 
 +Thus 
 +$$ 
 + \| u\|_{L^\infty(B_R)} \le \lim_{k \to \infty} \|u\|_{L^{p_{k+1}}(B_k)} \le \prod_{j=1}^k S^{1/p_j} p_j^{1/p_j} (4^{j+3} R^{-2} + p_j \|V\|_\infty)^{1/p_j} \|u\|_{L^2(B_{2R})} \le C (R^{-2} + \|V\|_\infty)^{n/2} \| u\|_{L^2(B_{2R})} 
 +$$ 
 + 
 +===== Inhomogeneous Moser ===== 
 + 
 +In the event that $u$ solves an inhomogeneous equation $(\Delta + V)u = f$, then Agmon's identity reads 
 +\begin{align*} 
 +(b+1)^2 (f \eta u^b, \eta u^{b+1}) &= (2b+1)\| \nabla (\eta u^{b+1}) \|^2 - \| u^{b+1} \nabla \eta \|^2 - 2b ( \nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) +(b+1)^2(V \eta u^{b+1}, \eta u^{b+1}). 
 +\end{align*} 
 +Thus we have 
 +\begin{align*} 
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\ 
 +S^{-1} \| u^{b+1}\|^2_{L^2(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le (2b+1) 4^{k+3} R^{-2} \| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 |((f - Vu) \eta u^b, \eta u^{b+1})| \\ 
 +\end{align*} 
 +To approximate the inhomogeneity, note that at a point $p$ with $R = \frac{|p|}{4}$, then $\| f\|_{L^\infty(B_{2R})} \le C R^{-n}$ by hypothesis, so 
 +\begin{align*} 
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\ 
 +S^{-1} \| u^{b+1}\|^2_{L^{2n/(n-2)}(B_k)} \le \| \nabla (\eta u^{b+1})\|^2 &\le ((2b+1) 4^{k+3} R^{-2} + (b+1)^2 V^\infty)\| u^{b+1}\|^2_{L^2(B_{k-1})} + (b+1)^2 C R^{-n} \|u^{b+\frac{1}{2}}\|^2_{L^2(B_{k-1})} \\ 
 +\end{align*} 
 + 
 +To estimate the $\|u^{b + \frac{1}{2}}\|^2_2 = \| u\|^{2b+1}_{2b+1}$ term, we use the Holder inequality and the previous term in the iteration to bound the $L^{2b+2}$ norm: 
 +$$ 
 + \| u\|_{2b+1} \le C\| u \|_{2b+2} (R^n)^{\frac{1}{(2b+1)(2b+2)}}. 
 +$$ 
 +Thus with $p_k = 2b_k + 2 = 2 \left( \frac{n}{n-2} \right)^k$, it holds that 
 + 
 +\begin{align*} 
 +(2b+1) \| \nabla (\eta u^{b+1})\|^2 &= \| u^{b+1} \nabla \eta \|^2 + 2b (\nabla (\eta u^{b+1}), u^{b+1} \nabla \eta) + (b+1)^2 ((f - Vu) \eta u^b, \eta u^{b+1}) \\ 
 +S^{-1} \| u\|^{p_k}_{L^{p_{k+1}}(B_k)} &\le ((p_k-1) 4^{k+3} R^{-2} + \frac{p_k^2}{4} V^\infty)\| u\|^{p_k}_{L^{p_k}(B_{k-1})} + C p_k^2 R^{\frac{n}{p_k} - n} \| u\|^{p_k-1}_{L^{p_k}(B_{k-1})} 
 \end{align*} \end{align*}
  
moser.1762464125.txt.gz · Last modified: by spencer