User Tools

Site Tools


lie_derivative

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lie_derivative [2023/06/19 12:46] – [In terms of a covariant derivative] spencerlie_derivative [2023/06/19 12:52] (current) – [In terms of a covariant derivative] spencer
Line 35: Line 35:
 That is, in this basis, we have that $Q\omega^j = \lambda_j \omega^j$. That is, in this basis, we have that $Q\omega^j = \lambda_j \omega^j$.
  
-Thus we have+Thus we have for $i < n$ that
 \begin{align*} \begin{align*}
-L_{\partial_r} (a_i \omega^i) &= \nabla_{\partial_r} (a_i \omega^i) + Q(a_i \omega^i) \\ +L_{\partial_r} (\omega^i) &= \nabla_{\partial_r} \omega^i + \lambda^i \omega^i.
-&= \sum_{i=1}^{n-1} (\partial_r a_i + \lambda^i a_i) \omega^i + (\partial_r a_n) dr + \sum_{i=1}^n a_i \nabla_{\partial_r} \omega^i.+
 \end{align*} \end{align*}
 +Setting $\nabla_{e_i} e_j = \gamma^k_{ij} e_k$, then $\nabla_{e_i} (\omega^j (e_k)) = (\nabla_{e_i} \omega^j)(e_k) + \omega^j (\nabla_{e_i} e_k)$.
 +Thus
 +$$(\nabla_{e_i} \omega^j)(e_k) = -\omega^j( \gamma^\ell_{ik} e_\ell) = -\gamma^j_{ik}.$$
 +Thus
 +$$\nabla_{e_i} \omega^j = -\gamma^j_{ik} \omega^k.$$
 +So
 +$$L_{\partial_r} (\omega^i) = -\gamma^i_{nk} \omega^k + \lambda^i \omega^i.$$
lie_derivative.1687193196.txt.gz · Last modified: by spencer