lie_derivative
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lie_derivative [2023/06/19 12:46] – [In terms of a covariant derivative] spencer | lie_derivative [2023/06/19 12:52] (current) – [In terms of a covariant derivative] spencer | ||
|---|---|---|---|
| Line 35: | Line 35: | ||
| That is, in this basis, we have that $Q\omega^j = \lambda_j \omega^j$. | That is, in this basis, we have that $Q\omega^j = \lambda_j \omega^j$. | ||
| - | Thus we have | + | Thus we have for $i < n$ that |
| \begin{align*} | \begin{align*} | ||
| - | L_{\partial_r} (a_i \omega^i) &= \nabla_{\partial_r} | + | L_{\partial_r} (\omega^i) &= \nabla_{\partial_r} \omega^i + \lambda^i \omega^i. |
| - | &= \sum_{i=1}^{n-1} (\partial_r a_i + \lambda^i | + | |
| \end{align*} | \end{align*} | ||
| + | Setting $\nabla_{e_i} e_j = \gamma^k_{ij} e_k$, then $\nabla_{e_i} (\omega^j (e_k)) = (\nabla_{e_i} \omega^j)(e_k) + \omega^j (\nabla_{e_i} e_k)$. | ||
| + | Thus | ||
| + | $$(\nabla_{e_i} \omega^j)(e_k) = -\omega^j( \gamma^\ell_{ik} e_\ell) = -\gamma^j_{ik}.$$ | ||
| + | Thus | ||
| + | $$\nabla_{e_i} \omega^j = -\gamma^j_{ik} \omega^k.$$ | ||
| + | So | ||
| + | $$L_{\partial_r} (\omega^i) = -\gamma^i_{nk} \omega^k + \lambda^i \omega^i.$$ | ||
lie_derivative.1687193196.txt.gz · Last modified: by spencer
