lie_derivative
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lie_derivative [2023/06/08 08:03] – spencer | lie_derivative [2023/06/19 12:52] (current) – [In terms of a covariant derivative] spencer | ||
|---|---|---|---|
| Line 15: | Line 15: | ||
| ==== In terms of a covariant derivative ==== | ==== In terms of a covariant derivative ==== | ||
| - | Recall (p. 24 of DG notes) that $L_X = \nabla_X + e(\omega^i) e^*(\nabla_{e_j} X)$. | + | Recall (p. 24 of DG notes) that $L_X = \nabla_X + e(\omega^i) e^*(\nabla_{e_j} X^\flat)$. |
| + | In the radial direction $\partial_r$ of geodesic coordinates, | ||
| + | $$L_{\partial_r} = \nabla_{\partial_r} + e(\omega^i) e^*(\nabla_{e_j} dr)$$ | ||
| + | where, for example, $\partial_r = e_n$. | ||
| + | |||
| + | Let $\omega^i$ be a coframe to the $e_i$s. The second fundamental form $h$ of a geodesic sphere is defined to be $h(X,Y) = g(\nabla_X \partial_r, Y)$. | ||
| + | In coordinates, | ||
| + | We have | ||
| + | \begin{align*} | ||
| + | e(\omega^i) e^*(\nabla_{e_i} dr) &= e(\omega^i) e^*(h_{ij} \nabla_{e_i} \omega^j) \\ | ||
| + | &= h_{ij} e(\omega^i) e^*(\omega^j) \\ | ||
| + | &= h, | ||
| + | \end{align*} | ||
| + | where $h$ denotes the natural extension of the second fundamental form to operate on all forms, henceforth called $Q$. | ||
| + | Thus we have an expression for the Lie derivative in terms of the second fundamental form: | ||
| + | $$L_{\partial_r} = \nabla_{\partial_r} + Q.$$ | ||
| + | |||
| + | One could replace $e_1, \ldots, e_{n-1}$ with an (orthogonal) eigenbasis for the second fundamental form, say with eigenvalues $\lambda^1, \ldots, \lambda^{n-1}$; | ||
| + | That is, in this basis, we have that $Q\omega^j = \lambda_j \omega^j$. | ||
| + | |||
| + | Thus we have for $i < n$ that | ||
| + | \begin{align*} | ||
| + | L_{\partial_r} (\omega^i) &= \nabla_{\partial_r} \omega^i + \lambda^i \omega^i. | ||
| + | \end{align*} | ||
| + | Setting $\nabla_{e_i} e_j = \gamma^k_{ij} e_k$, then $\nabla_{e_i} (\omega^j (e_k)) = (\nabla_{e_i} \omega^j)(e_k) + \omega^j (\nabla_{e_i} e_k)$. | ||
| + | Thus | ||
| + | $$(\nabla_{e_i} \omega^j)(e_k) = -\omega^j( \gamma^\ell_{ik} e_\ell) = -\gamma^j_{ik}.$$ | ||
| + | Thus | ||
| + | $$\nabla_{e_i} \omega^j = -\gamma^j_{ik} \omega^k.$$ | ||
| + | So | ||
| + | $$L_{\partial_r} (\omega^i) = -\gamma^i_{nk} \omega^k + \lambda^i \omega^i.$$ | ||
lie_derivative.1686225818.txt.gz · Last modified: by spencer
