User Tools

Site Tools


lie_derivative

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lie_derivative [2023/06/08 08:03] spencerlie_derivative [2023/06/19 12:52] (current) – [In terms of a covariant derivative] spencer
Line 15: Line 15:
 ==== In terms of a covariant derivative ==== ==== In terms of a covariant derivative ====
  
-Recall (p. 24 of DG notes) that $L_X = \nabla_X + e(\omega^i) e^*(\nabla_{e_j} X)$.+Recall (p. 24 of DG notes) that $L_X = \nabla_X + e(\omega^i) e^*(\nabla_{e_j} X^\flat)$. 
 +In the radial direction $\partial_r$ of geodesic coordinates, 
 +$$L_{\partial_r} = \nabla_{\partial_r} + e(\omega^i) e^*(\nabla_{e_j} dr)$$ 
 +where, for example, $\partial_r = e_n$. 
 + 
 +Let $\omega^i$ be a coframe to the $e_i$s. The second fundamental form $h$ of a geodesic sphere is defined to be $h(X,Y) = g(\nabla_X \partial_r, Y)$. 
 +In coordinates, we have $h = h_{ij} e(\omega^i) e^*(\omega^j)$, where $h_{ij}$ satisfy $\nabla_{e_i} dr = \sum_{j=1}^{n-1} h_{ij} \omega^i$. 
 +We have 
 +\begin{align*} 
 +e(\omega^i) e^*(\nabla_{e_i} dr) &= e(\omega^i) e^*(h_{ij} \nabla_{e_i} \omega^j) \\ 
 +&= h_{ij} e(\omega^i) e^*(\omega^j) \\ 
 +&= h, 
 +\end{align*} 
 +where $h$ denotes the natural extension of the second fundamental form to operate on all forms, henceforth called $Q$. 
 +Thus we have an expression for the Lie derivative in terms of the second fundamental form: 
 +$$L_{\partial_r} = \nabla_{\partial_r} + Q.$$ 
 + 
 +One could replace $e_1, \ldots, e_{n-1}$ with an (orthogonal) eigenbasis for the second fundamental form, say with eigenvalues $\lambda^1, \ldots, \lambda^{n-1}$; that is, so that $h_{ij} = \delta_{i}^j \lambda^j$ (here and unless otherwise stated in the sequel, no sum). 
 +That is, in this basis, we have that $Q\omega^j = \lambda_j \omega^j$. 
 + 
 +Thus we have for $i < n$ that 
 +\begin{align*} 
 +L_{\partial_r} (\omega^i) &= \nabla_{\partial_r} \omega^i + \lambda^i \omega^i. 
 +\end{align*} 
 +Setting $\nabla_{e_i} e_j = \gamma^k_{ij} e_k$, then $\nabla_{e_i} (\omega^j (e_k)) = (\nabla_{e_i} \omega^j)(e_k) + \omega^j (\nabla_{e_i} e_k)$. 
 +Thus 
 +$$(\nabla_{e_i} \omega^j)(e_k) = -\omega^j( \gamma^\ell_{ik} e_\ell) = -\gamma^j_{ik}.$$ 
 +Thus 
 +$$\nabla_{e_i} \omega^j = -\gamma^j_{ik} \omega^k.$$ 
 +So 
 +$$L_{\partial_r} (\omega^i) = -\gamma^i_{nk} \omega^k + \lambda^i \omega^i.$$
lie_derivative.1686225818.txt.gz · Last modified: by spencer