User Tools

Site Tools


lie_derivative

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
lie_derivative [2023/06/05 13:02] – created spencerlie_derivative [2023/06/19 12:52] (current) – [In terms of a covariant derivative] spencer
Line 15: Line 15:
 ==== In terms of a covariant derivative ==== ==== In terms of a covariant derivative ====
  
-Let $\alpha$ be any form on $Mand $X$ any vector field; let $\nablabe a metric-compatible connection+Recall (p. 24 of DG notes) that $L_X = \nabla_X + e(\omega^i) e^*(\nabla_{e_j} X^\flat)$. 
-We compute+In the radial direction $\partial_r$ of geodesic coordinates, 
 +$$L_{\partial_r} = \nabla_{\partial_r} + e(\omega^i) e^*(\nabla_{e_j} dr)$$ 
 +where, for example, $\partial_r = e_n$. 
 + 
 +Let $\omega^i$ be a coframe to the $e_i$s. The second fundamental form $hof a geodesic sphere is defined to be $h(X,Y) = g(\nabla_X \partial_r, Y)$
 +In coordinates, we have $h = h_{ij} e(\omega^i) e^*(\omega^j)$, where $h_{ij}$ satisfy $\nabla_{e_i} dr = \sum_{j=1}^{n-1} h_{ij} \omega^i$
 +We have
 \begin{align*} \begin{align*}
-L_X (|\alpha|^2 vol) &= (X |\alpha|^2vol + |\alpha|^2 L_X vol\tag{by axioms 1, 2} \\ +e(\omega^i) e^*(\nabla_{e_i} dr) &e(\omega^ie^*(h_{ij} \nabla_{e_i\omega^j) \\ 
-&\langle (2\nabla_X + \mathrm{div}(X)) \alpha, \alpha \rangle vol+&h_{ije(\omega^ie^*(\omega^j) \\ 
 +&= h,
 \end{align*} \end{align*}
-Thus we may express the Lie derivative in terms of the connection and divergence. +where $h$ denotes the natural extension of the second fundamental form to operate on all forms, henceforth called $Q$. 
-A typical choice of $X$ is a normal vector field to a hypersurface; the divergence of $X$ is then the trace of the second fundamental form of the embedding. For example, in Euclidean space it follows that +Thus we have an expression for the Lie derivative in terms of the second fundamental form: 
-$$\frac{1}{2} L_{\partial/\partial r(|\alpha|^2 vol) \langle (\nabla_{\partial/\partial r} + n/2)\alpha, \alpha\rangle vol.$$+$$L_{\partial_r} = \nabla_{\partial_r} + Q.$$
  
-Alsowriting $g$ for the metric then +One could replace $e_1\ldots, e_{n-1}with an (orthogonal) eigenbasis for the second fundamental form, say with eigenvalues $\lambda^1, \ldots, \lambda^{n-1}$; that is, so that $h_{ij} = \delta_{i}^\lambda^j$ (here and unless otherwise stated in the sequelno sum)
-$$2 \langle \nabla_X \alpha, \alpha \rangle X |\alpha|^2 = L_X (g(\alpha\alpha)) = (L_X g)(\alpha, \alpha) + 2g(L_X \alpha, \alpha).$$+That isin this basis, we have that $Q\omega^j = \lambda_j \omega^j$.
  
 +Thus we have for $i < n$ that
 +\begin{align*}
 +L_{\partial_r} (\omega^i) &= \nabla_{\partial_r} \omega^i + \lambda^i \omega^i.
 +\end{align*}
 +Setting $\nabla_{e_i} e_j = \gamma^k_{ij} e_k$, then $\nabla_{e_i} (\omega^j (e_k)) = (\nabla_{e_i} \omega^j)(e_k) + \omega^j (\nabla_{e_i} e_k)$.
 +Thus
 +$$(\nabla_{e_i} \omega^j)(e_k) = -\omega^j( \gamma^\ell_{ik} e_\ell) = -\gamma^j_{ik}.$$
 +Thus
 +$$\nabla_{e_i} \omega^j = -\gamma^j_{ik} \omega^k.$$
 +So
 +$$L_{\partial_r} (\omega^i) = -\gamma^i_{nk} \omega^k + \lambda^i \omega^i.$$
lie_derivative.1685984562.txt.gz · Last modified: by spencer