laplacian
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revision | |||
| laplacian [2022/09/09 09:19] – spencer | laplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer | ||
|---|---|---|---|
| Line 17: | Line 17: | ||
| &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | ||
| &= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j \\ | &= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j \\ | ||
| - | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + \left[e(\nabla_j | + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) (\nabla_{\nabla_j |
| - | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) | + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) |
| - | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j). | + | &= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) |
| \end{align*} | \end{align*} | ||
| - | Acting | + | The action of the curvature |
| - | \[ e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i | + | \[ (R(X,Y)\omega)(Z) = R(X, |
| - | In the $M$-part, | + | So |
| - | \[ e(\omega^i)e^*(\omega^j) R^{TM} \omega | + | \[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, e_j) e_j) \omega^i |
| + | whence | ||
| + | \[ \Delta | ||
laplacian.1662729561.txt.gz · Last modified: by spencer
