User Tools

Site Tools


laplacian

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
laplacian [2022/09/09 08:34] spencerlaplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer
Line 17: Line 17:
 &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\
 &= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j \\ &= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j \\
-&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + \left[e(\nabla_j \omega^i)e^*(\omega^j) - e(\omega^j)e^*(\nabla_j \omega^i)\right\nabla_i \\ +&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) (\nabla_{\nabla_j e_i} \nabla_{\nabla_i e_j}) \\ 
-&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j).+&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) - e(\omega^i) e^*(\omega^j) \nabla_{[e^i, e^j]\\ 
 +&= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) R(e_i, e_j).
 \end{align*} \end{align*}
 +
 +The action of the curvature on a 1-form $\omega$ is given by
 +\[ (R(X,Y)\omega)(Z) = R(X,Y) (\omega(Z)) - \omega(R(X,Y)Z) = -\omega(R(X,Y)Z). \]
 +So
 +\[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, e_j) e_j) \omega^i = \mathrm{Ric}(\omega, e_i)\omega^i,\]
 +whence
 +\[ \Delta \omega = \nabla^* \nabla \omega + \mathrm{Ric}(\omega, e_i)\omega^i. \]
laplacian.1662726892.txt.gz · Last modified: by spencer