laplacian
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| laplacian [2022/09/09 08:24] – spencer | laplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer | ||
|---|---|---|---|
| Line 16: | Line 16: | ||
| &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[\langle \nabla_j \omega^i, \omega^j \rangle \nabla_i - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \langle \omega^j, \omega^i\rangle\nabla_j\nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[\langle \nabla_j \omega^i, \omega^j \rangle \nabla_i - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \langle \omega^j, \omega^i\rangle\nabla_j\nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | ||
| &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | ||
| - | &= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j | + | &= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j |
| + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) (\nabla_{\nabla_j e_i} - \nabla_{\nabla_i e_j}) \\ | ||
| + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) - e(\omega^i) e^*(\omega^j) \nabla_{[e^i, | ||
| + | &= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) R(e_i, e_j). | ||
| \end{align*} | \end{align*} | ||
| + | The action of the curvature on a 1-form $\omega$ is given by | ||
| + | \[ (R(X, | ||
| + | So | ||
| + | \[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, | ||
| + | whence | ||
| + | \[ \Delta \omega = \nabla^* \nabla \omega + \mathrm{Ric}(\omega, | ||
laplacian.1662726281.txt.gz · Last modified: by spencer
