laplacian
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| laplacian [2022/09/08 12:40] – spencer | laplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer | ||
|---|---|---|---|
| Line 6: | Line 6: | ||
| \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \] | \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \] | ||
| + | ===== Decomposing the Laplacian ===== | ||
| - | ==== Rough Laplacian ==== | + | Let $e_i$ be an orthonormal frame of $TM$ about some point $p$, with coframe |
| - | + | ||
| - | Another Laplacian on forms is the rough Laplacian, | + | |
| - | In an orthonormal frame $(e_i)_{i=1}^n$ | + | |
| \begin{align*} | \begin{align*} | ||
| - | \nabla^* \nabla | + | \Delta & |
| - | &= -e^*(\omega^i)\nabla_{e_i} | + | & |
| - | &= -e^*(\omega^i) e(\omega^j) \nabla_{e_i} | + | &= \left[-e(\omega^i)(e^*(\nabla_i |
| - | &= -\nabla_{e_i} \nabla_{e_i} + (-e^*(\omega^i) e(\nabla_{e_i} | + | & |
| - | &= -\nabla_{e_i} | + | &= \left[-e(\omega^i)e^*(\nabla_i |
| + | & | ||
| + | &= -\nabla_i \nabla_i + \nabla_{\nabla_i | ||
| + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) | ||
| + | & | ||
| + | &= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) R(e_i, | ||
| \end{align*} | \end{align*} | ||
| - | To simplify further, remark that | ||
| - | \begin{align*} | ||
| - | \langle \nabla_{e_i} e_j, e_i \rangle_{L^2} \nabla_{e_j} &= -\langle e_j, \nabla_{e_i} e_i \rangle_{L^2} \nabla_{e_j} \\ | ||
| - | &= - \nabla_{\langle e_j, \nabla_{e_i} e_i\rangle_{L^2} e_j} \\ | ||
| - | &= -\nabla_{\nabla_{e_i} e_i}, | ||
| - | \end{align*} | ||
| - | and so | ||
| - | \begin{align*} | ||
| - | \nabla^* \nabla &= -\nabla_{e_i} \nabla_{e_i} + \nabla_{\nabla_{e_i} e_i}. | ||
| - | \end{align*} | ||
| - | |||
| - | ===== Difference between Laplacians ===== | ||
| - | |||
| - | By the above computation of the rough Laplacian, | ||
| - | \begin{align*} | ||
| - | \Delta &= \nabla^* \nabla + \mathrm{d}\mathrm{d}^* \\ | ||
| - | &= \nabla^* \nabla - e(\omega^i) \nabla_{e_i} e^*(\omega^j) \nabla_{e_j}. | ||
| - | \end{align*} | ||
| - | Then | ||
| - | \[ e(\omega^i) \nabla_{e_i} = \nabla_{e_i} e(\omega^i) - e(\nabla_{e_i} \omega^i), \] | ||
| - | so | ||
| - | \[ e(\omega^i)\nabla_{e_i} e^*(e_j) = \nabla_{e_j} - \nabla_{e_i} e(\nabla_{e_i} \omega^i) e^*(e_j). \] | ||
| - | Recall that for any 1-form $\omega$ and vector field $X$ we have | ||
| - | \[ e^*(X) e(\omega) = e^*(X)(\omega) - e(\omega)e^*(X). \] | ||
| - | Rearranging, | ||
| - | \begin{align*} | ||
| - | e(\nabla_{e_i} \omega^i) e^*(e_j) &= (\nabla_{e_i} \omega^i)(e_j) - e^*(e_j)e(\nabla_{e_i} \omega^i) \\ | ||
| - | &= \omega^i(\nabla_{e_i} e_j) - \langle \nabla_{e_i} \omega^i, e_j \rangle \\ | ||
| - | &= \langle \nabla_{e_i} e_j, e_i \rangle - \langle \nabla_{e_i} e_i, e_j \rangle \\ | ||
| - | \end{align*} | ||
| - | |||
| - | Something looks wrong here. | ||
| + | The action of the curvature on a 1-form $\omega$ is given by | ||
| + | \[ (R(X, | ||
| + | So | ||
| + | \[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, | ||
| + | whence | ||
| + | \[ \Delta \omega = \nabla^* \nabla \omega + \mathrm{Ric}(\omega, | ||
laplacian.1662655235.txt.gz · Last modified: by spencer
