User Tools

Site Tools


laplacian

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
laplacian [2022/09/08 12:40] spencerlaplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer
Line 6: Line 6:
 \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \] \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \]
  
 +===== Decomposing the Laplacian =====
  
-==== Rough Laplacian ==== +Let $e_ibe an orthonormal frame of $TM$ about some point $p$, with coframe $\omega^i$. We compute as follows
- +
-Another Laplacian on forms is the rough Laplacian, $\nabla^* \nabla$+
-In an orthonormal frame $(e_i)_{i=1}^n$ of $TM$ with dual frame $(\omega^i)_{i=1}^n$, the rough Laplacian may be expressed in coordinates by+
 \begin{align*} \begin{align*}
-\nabla^* \nabla &= \mathrm{d}^* \mathrm{d} \\ +\Delta &\mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d} \\ 
-&= -e^*(\omega^i)\nabla_{e_i} e(\omega^j) \nabla_{e_j} \\ +&\left[-e(\omega^i)\nabla_i e^*(\omega^j)\nabla_j\right] - \left[e^*(\omega^j)\nabla_j e(\omega^i)\nabla_i\right] \\ 
-&= -e^*(\omega^i) e(\omega^j) \nabla_{e_i} \nabla_{e_j} + e(\nabla_{e_i} \omega^j) \nabla_{e_j} \\ +&= \left[-e(\omega^i)(e^*(\nabla_i \omega^j) + e^*(\omega^j)\nabla_i)\nabla_j\right] - \left[e^*(\omega^j)(e(\nabla_j \omega^i) + e(\omega^i)\nabla_j)\nabla_i \right] \\ 
-&= -\nabla_{e_i} \nabla_{e_i} + (-e^*(\omega^i) e(\nabla_{e_i} e_j) \nabla_{e_j}) \\ +&\left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[e^*(\omega^j)e(\nabla_j \omega^i)\nabla_i + e^*(\omega^j)e(\omega^i)\nabla_j\nabla_i \right] \\ 
-&= -\nabla_{e_i} \nabla_{e_i} - \langle \nabla_{e_i} e_je_i \rangle \nabla_{e_j}.+&= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[\langle \nabla_j \omega^i, \omega^j \rangle \nabla_i - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \langle \omega^j, \omega^i\rangle\nabla_j\nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ 
 +&\left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ 
 +&= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j \\ 
 +&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) (\nabla_{\nabla_j e_i} \nabla_{\nabla_i e_j}) \\ 
 +&\nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) e(\omega^i) e^*(\omega^j) \nabla_{[e^ie^j]} \\ 
 +&= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) R(e_i, e_j).
 \end{align*} \end{align*}
-To simplify further, remark that 
-\begin{align*} 
-\langle \nabla_{e_i} e_j, e_i \rangle_{L^2} \nabla_{e_j} &= -\langle e_j, \nabla_{e_i} e_i \rangle_{L^2} \nabla_{e_j} \\ 
-&= - \nabla_{\langle e_j, \nabla_{e_i} e_i\rangle_{L^2} e_j} \\ 
-&= -\nabla_{\nabla_{e_i} e_i}, 
-\end{align*} 
-and so 
-\begin{align*} 
-\nabla^* \nabla &= -\nabla_{e_i} \nabla_{e_i} + \nabla_{\nabla_{e_i} e_i}. 
-\end{align*} 
- 
-===== Difference between Laplacians ===== 
- 
-By the above computation of the rough Laplacian, 
-\begin{align*} 
-\Delta &= \nabla^* \nabla + \mathrm{d}\mathrm{d}^* \\ 
-&= \nabla^* \nabla - e(\omega^i) \nabla_{e_i} e^*(\omega^j) \nabla_{e_j}. 
-\end{align*} 
-Then 
-\[ e(\omega^i) \nabla_{e_i} = \nabla_{e_i} e(\omega^i) - e(\nabla_{e_i} \omega^i), \] 
-so 
-\[ e(\omega^i)\nabla_{e_i} e^*(e_j) = \nabla_{e_j} - \nabla_{e_i} e(\nabla_{e_i} \omega^i) e^*(e_j). \] 
-Recall that for any 1-form $\omega$ and vector field $X$ we have 
-\[ e^*(X) e(\omega) = e^*(X)(\omega) - e(\omega)e^*(X). \] 
-Rearranging, thus 
-\begin{align*} 
-e(\nabla_{e_i} \omega^i) e^*(e_j) &= (\nabla_{e_i} \omega^i)(e_j) - e^*(e_j)e(\nabla_{e_i} \omega^i) \\ 
-&= \omega^i(\nabla_{e_i} e_j) - \langle \nabla_{e_i} \omega^i, e_j \rangle \\ 
-&= \langle \nabla_{e_i} e_j, e_i \rangle - \langle \nabla_{e_i} e_i, e_j \rangle \\ 
-\end{align*} 
- 
-Something looks wrong here. 
  
 +The action of the curvature on a 1-form $\omega$ is given by
 +\[ (R(X,Y)\omega)(Z) = R(X,Y) (\omega(Z)) - \omega(R(X,Y)Z) = -\omega(R(X,Y)Z). \]
 +So
 +\[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, e_j) e_j) \omega^i = \mathrm{Ric}(\omega, e_i)\omega^i,\]
 +whence
 +\[ \Delta \omega = \nabla^* \nabla \omega + \mathrm{Ric}(\omega, e_i)\omega^i. \]
laplacian.1662655235.txt.gz · Last modified: by spencer