laplacian
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| laplacian [2022/09/08 12:12] – [Rough Laplacian] spencer | laplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer | ||
|---|---|---|---|
| Line 6: | Line 6: | ||
| \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \] | \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \] | ||
| + | ===== Decomposing the Laplacian ===== | ||
| - | ==== Rough Laplacian ==== | + | Let $e_i$ be an orthonormal frame of $TM$ about some point $p$, with coframe |
| - | + | ||
| - | Another Laplacian on forms is the rough Laplacian, | + | |
| - | In an orthonormal frame $(e_i)_{i=1}^n$ | + | |
| - | \begin{align*} | + | |
| - | \nabla^* \nabla &= \mathrm{d}^* \mathrm{d} \\ | + | |
| - | &= -e^*(\omega^i)\nabla_{e_i} e(\omega^j) \nabla_{e_j} \\ | + | |
| - | &= -e^*(\omega^i) e(\omega^j) \nabla_{e_i} \nabla_{e_j} + e(\nabla_{e_i} \omega^j) \nabla_{e_j} \\ | + | |
| - | &= -\nabla_{e_i} \nabla_{e_i} + (-e^*(\omega^i) e(\nabla_{e_i} e_j) \nabla_{e_j}) \\ | + | |
| - | &= -\nabla_{e_i} \nabla_{e_i} - \langle \nabla_{e_i} e_j, e_i \rangle \nabla_{e_j}. | + | |
| - | \end{align*} | + | |
| - | To simplify further, remark that | + | |
| - | \begin{align*} | + | |
| - | \langle \nabla_{e_i} e_j, e_i \rangle_{L^2} \nabla_{e_j} &= -\langle e_j, \nabla_{e_i} e_i \rangle_{L^2} \nabla_{e_j} \\ | + | |
| - | &= - \nabla_{\langle e_j, \nabla_{e_i} e_i\rangle_{L^2} e_j} \\ | + | |
| - | &= -\nabla_{\nabla_{e_i} e_i}, | + | |
| - | \end{align*} | + | |
| - | and so | + | |
| \begin{align*} | \begin{align*} | ||
| - | \nabla^* \nabla &= -\nabla_{e_i} \nabla_{e_i} + \nabla_{\nabla_{e_i} e_i}. | + | \Delta &= \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d} \\ |
| + | & | ||
| + | &= \left[-e(\omega^i)(e^*(\nabla_i \omega^j) + e^*(\omega^j)\nabla_i)\nabla_j\right] - \left[e^*(\omega^j)(e(\nabla_j \omega^i) + e(\omega^i)\nabla_j)\nabla_i \right] \\ | ||
| + | &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[e^*(\omega^j)e(\nabla_j \omega^i)\nabla_i + e^*(\omega^j)e(\omega^i)\nabla_j\nabla_i \right] \\ | ||
| + | &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[\langle \nabla_j \omega^i, \omega^j \rangle \nabla_i - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \langle \omega^j, \omega^i\rangle\nabla_j\nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ | ||
| + | &= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i | ||
| + | &= -\nabla_i \nabla_i + \nabla_{\nabla_i | ||
| + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) (\nabla_{\nabla_j e_i} - \nabla_{\nabla_i e_j}) \\ | ||
| + | &= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) - e(\omega^i) e^*(\omega^j) \nabla_{[e^i, | ||
| + | &= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) R(e_i, e_j). | ||
| \end{align*} | \end{align*} | ||
| + | The action of the curvature on a 1-form $\omega$ is given by | ||
| + | \[ (R(X, | ||
| + | So | ||
| + | \[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, | ||
| + | whence | ||
| + | \[ \Delta \omega = \nabla^* \nabla \omega + \mathrm{Ric}(\omega, | ||
laplacian.1662653533.txt.gz · Last modified: by spencer
