User Tools

Site Tools


laplacian

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
laplacian [2022/09/08 12:09] – created spencerlaplacian [2022/09/10 15:32] (current) – [Decomposing the Laplacian] spencer
Line 6: Line 6:
 \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \] \[ \Delta = \mathrm{d}\mathrm{d}^* + \mathrm{d}^* \mathrm{d}. \]
  
 +===== Decomposing the Laplacian =====
  
-==== Rough Laplacian ==== +Let $e_ibe an orthonormal frame of $TM$ about some point $p$, with coframe $\omega^i$. We compute as follows
- +
-Another Laplacian on forms is the rough Laplacian, $\nabla^* \nabla$+
-In an orthonormal frame $(e_i)_{i=1}^n$ of $TM$ with dual frame $(\omega^i)_{i=1}^n$, the rough Laplacian may be expressed in coordinates by +
-\begin{align*} +
-\nabla^* \nabla &= -e^*(\omega^i)\nabla_{e_i} e(\omega^j) \nabla_{e_j} \\ +
-&= -e^*(\omega^i) e(\omega^j) \nabla_{e_i} \nabla_{e_j} + e(\nabla_{e_i} \omega^j) \nabla_{e_j} \\ +
-&= -\nabla_{e_i} \nabla_{e_i} + (-e^*(\omega^i) e(\nabla_{e_i} e_j) \nabla_{e_j}). +
-&= -\nabla_{e_i} \nabla_{e_i} - \langle \nabla_{e_i} e_j, e_i \rangle \nabla_{e_j}. +
-\end{align*} +
-To simplify further, remark that +
-\begin{align*} +
-\langle \nabla_{e_i} e_j, e_i \rangle_{L^2} \nabla_{e_j} &= -\langle e_j, \nabla_{e_i} e_i \rangle_{L^2} \nabla_{e_j} \\ +
-&= - \nabla_{\langle e_j, \nabla_{e_i} e_i\rangle_{L^2} e_j} \\ +
-&= -\nabla_{\nabla_{e_i} e_i}, +
-\end{align*} +
-and so+
 \begin{align*} \begin{align*}
-\nabla^* \nabla &= -\nabla_{e_i} \nabla_{e_i} + \nabla_{\nabla_{e_ie_i}.+\Delta &= \mathrm{d}\mathrm{d}^* \mathrm{d}^* \mathrm{d} \\ 
 +&\left[-e(\omega^i)\nabla_i e^*(\omega^j)\nabla_j\right] - \left[e^*(\omega^j)\nabla_j e(\omega^i)\nabla_i\right] \\ 
 +&= \left[-e(\omega^i)(e^*(\nabla_i \omega^j) + e^*(\omega^j)\nabla_i)\nabla_j\right] - \left[e^*(\omega^j)(e(\nabla_j \omega^i) + e(\omega^i)\nabla_j)\nabla_i \right] \\ 
 +&= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[e^*(\omega^j)e(\nabla_j \omega^i)\nabla_i + e^*(\omega^j)e(\omega^i)\nabla_j\nabla_i \right] \\ 
 +&= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[\langle \nabla_j \omega^i, \omega^j \rangle \nabla_i - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \langle \omega^j, \omega^i\rangle\nabla_j\nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ 
 +&= \left[-e(\omega^i)e^*(\nabla_i \omega^j)\nabla_j - e(\omega^i)e^*(\omega^j)\nabla_i\nabla_j\right] - \left[-\nabla_{\nabla_i e_i} - e(\nabla_j \omega^i) e^*(\omega^j) \nabla_i + \nabla_i \nabla_i - e(\omega^i)e^*(\omega^j) \nabla_j \nabla_i \right] \\ 
 +&= -\nabla_i \nabla_i + \nabla_{\nabla_i e_i} + e(\omega^i)e^*(\omega^j)(\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\nabla_j \omega^i)e^*(\omega^j)\nabla_i - e(\omega^i)e^*(\nabla_i \omega^j) \nabla_j \\ 
 +&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) + e(\omega^i) e^*(\omega^j) (\nabla_{\nabla_j e_i} - \nabla_{\nabla_i e_j}) \\ 
 +&= \nabla^* \nabla + e(\omega^i)e^*(\omega^j) (\nabla_j \nabla_i - \nabla_i \nabla_j) - e(\omega^i) e^*(\omega^j) \nabla_{[e^i, e^j]\\ 
 +&= \nabla^* \nabla + e(\omega^i) e^*(\omega^j) R(e_i, e_j).
 \end{align*} \end{align*}
  
 +The action of the curvature on a 1-form $\omega$ is given by
 +\[ (R(X,Y)\omega)(Z) = R(X,Y) (\omega(Z)) - \omega(R(X,Y)Z) = -\omega(R(X,Y)Z). \]
 +So
 +\[ e(\omega^i) e^*(\omega^j) R(e_i,e_j) \omega = -\omega(R(e_i, e_j) e_j) \omega^i = \mathrm{Ric}(\omega, e_i)\omega^i,\]
 +whence
 +\[ \Delta \omega = \nabla^* \nabla \omega + \mathrm{Ric}(\omega, e_i)\omega^i. \]
laplacian.1662653393.txt.gz · Last modified: by spencer