User Tools

Site Tools


exterior_derivative

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
exterior_derivative [2022/09/05 05:20] spencerexterior_derivative [2022/09/05 08:39] (current) – [Adjoint of the exterior derivative] spencer
Line 24: Line 24:
  
 Suppose that $M$ is closed and equipped with a Riemannian metric $g$, and that $E$ is equipped with a compatible fibre metric $h$. Suppose that $M$ is closed and equipped with a Riemannian metric $g$, and that $E$ is equipped with a compatible fibre metric $h$.
-Then there is an induced metric on each fibre of each bundle $\Lambda^k T^*M \otimes E$, and by integrating there is an induced $L^2$ metric on each $\Omega^k(E)$. 
 Let $p \in M$ be any point, and $(e_i)_{i=1}^n$ be an orthonormal frame of $TM$ in a neighbourhood about $p$. Let $p \in M$ be any point, and $(e_i)_{i=1}^n$ be an orthonormal frame of $TM$ in a neighbourhood about $p$.
 Let $(\omega^i)_{i=1}^n$ be the dual frame of $T^*M$ about $p$. Let $(\omega^i)_{i=1}^n$ be the dual frame of $T^*M$ about $p$.
  
 **Claim:** The adjoint to the exterior derivative is given by **Claim:** The adjoint to the exterior derivative is given by
-\[ \mathrm{d}^* = -\omega(e_i)^* \nabla_{e_i}. \]+\[ \mathrm{d}^* = -e(\omega^i)^* \nabla_{e_i}. \]
  
-**Proof:** Take $\sigma \in \Omega^{k+1}(E)and $\tau \in \Omega^k(E)$+**Proof 1:** We use Stokes's theorem. 
-We compute:+First, note that 
 +\[ e_i \langle e(\omega^i)\phi, \psi \rangle = \langle \nabla_{e_ie(\omega^i)\phi, \psi\rangle + \langle e(\omega^i)\phi, \nabla_{e_i} \psi \rangle,\] 
 +and moreover that 
 +\\nabla_{e_i} e(\omega^i) \phi = e(\omega^i\nabla_{e_i} \phi + e(\nabla_{e_i} \omega^i) \phi = = e(\omega^i) \nabla_{e_i} \phi + e(\nabla_{e_i} e_i) \phi\] 
 +One therefore computes:
 \begin{align*} \begin{align*}
-(\mathrm{d}\tau, \sigma)_{L^2} &(e(\omega^i) \nabla_{e_i} \tau, \sigma)_{L^2} \\ +\langle \mathrm{d}\phi, \psi\rangle_{L^2} &\int_M \langle \mathrm{d} \phi, \psi \rangle \mathrm{vol} \\ 
-&= (\nabla_{e_i} \tau, e(\omega^i)^* \sigma)_{L^2}+&= \int_M \langle e(\omega^i) \nabla_{e_i} \phi, \psi \rangle \mathrm{vol} \\ 
 +&\int_M \left(e_i \langle e(\omega^i), \psi\rangle - \langle e(\nabla_{e_i} e_i) \phi\psi\rangle - \langle e(\omega^i)\phi, \nabla_{e_i} \psi\rangle\right\mathrm{vol}.
 \end{align*} \end{align*}
-On the other hand, +The last term is the one we want to survive; so we hope to show that 
-\begin{align*} +\\left(e_i \langle e(\omega^i), \psi\rangle \langle e(\nabla_{e_i} e_i\rangle\right)\mathrm{vol} \] 
-(\tau, -\omega(e_i)^* \nabla_{e_i} \sigma)_{L^2} &= -(e(\omega^i)  \tau, \nabla_{e_i} \sigma)_{L^2} \\ +is exact.
-\end{align*} +
-Now recall that by metric compatibility, +
-\begin{align*} +
-\nabla_{e_i} \langle e(\omega^i)\tau, \sigma\rangle  &\langle \nabla_{e_i} e(\omega^i)\tau, \sigma\rangle + \langle e(\omega^i)\tau, \nabla_{e_i}\sigma\rangle \\ +
-&= \langle (\nabla_{e_i} \omega^i) \wedge \tau + e(\omega^i) \nabla_{e_i} \tau, \sigma\rangle \langle e(\omega^i)\tau, \nabla_{e_i}\sigma\rangle. +
-\end{align*} +
-The left-hand side is a divergence; integrating (using round brackets everywhere for the $L^2$ norm, over a compact neighbourhood and multiplying by a suitable bump function to remove boundary terms), we have on a neighbourhood about $p$ that +
-\begin{align*} +
-( e(\omega^i)\tau, \nabla_{e_i}\sigma) &= -((\nabla_{e_i} \omega^i) \wedge \tau,\sigma) - ( e(\omega^i) \nabla_{e_i} \tau, \sigma) \\ +
-&= -( (\nabla_{e_i} \omega^i) \wedge \tau,\sigma)- ( \nabla_{e_i} \tau, e(\omega^i)^* \sigma), +
-\end{align*} +
exterior_derivative.1662369659.txt.gz · Last modified: by spencer