User Tools

Site Tools


exterior_derivative

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
exterior_derivative [2022/09/01 15:26] spencerexterior_derivative [2022/09/05 08:39] (current) – [Adjoint of the exterior derivative] spencer
Line 14: Line 14:
  
 In this Leibniz rule, $\mathrm{d}\omega$ is the usual exterior derivative on forms. In this Leibniz rule, $\mathrm{d}\omega$ is the usual exterior derivative on forms.
 +
 +===== Formula for the exterior derivative in terms of the connection =====
 +
 +In a local orthonormal frame $(e_i)_{i=1}^n$ for $TM$, the exterior derivative takes the following form:
 +\[ \mathrm{d}\alpha = e^i \wedge \nabla_{e_i} \alpha. \]
 +The crux of the proof is that $\nabla$ is torsion-free; one can first argue that this identity holds in a coordinate frame (so, for the Levi-Civita connection, $\nabla_{e_i} \nabla_{e_j} = -\nabla_{e_j} \nabla_{e_i}$) and then extend by $C^\infty(M)$-linearity as appropriate.
  
 ===== Adjoint of the exterior derivative ====== ===== Adjoint of the exterior derivative ======
  
 Suppose that $M$ is closed and equipped with a Riemannian metric $g$, and that $E$ is equipped with a compatible fibre metric $h$. Suppose that $M$ is closed and equipped with a Riemannian metric $g$, and that $E$ is equipped with a compatible fibre metric $h$.
-Then there is an induced metric on each fibre of each bundle $\Lambda^k T^*M \otimes E$, and by integrating there is an induced $L^2$ metric on each $\Omega^k(E)$. +Let $p \in M$ be any point, and $(e_i)_{i=1}^n$ be an orthonormal frame of $TM$ in a neighbourhood about $p$
-Let $p \in M$ be any point, let $(\omega^1,\ldots,\omega^n)$ be an orthonormal frame of $T^*M$ in a neighbourhood about $p$, and let $(s_1,\ldots, s_r)$ be an orthonormal frame of $Ein a neighbourhood about $p$.+Let $(\omega^i)_{i=1}^n$ be the dual frame of $T^*M$ about $p$.
  
-**Claim:** The adjoint of the exterior derivative in the $L^2$ norm is given by+**Claim:** The adjoint to the exterior derivative is given by 
 +\[ \mathrm{d}^* = -e(\omega^i)^* \nabla_{e_i}. \]
  
 +**Proof 1:** We use Stokes's theorem.
 +First, note that
 +\[ e_i \langle e(\omega^i)\phi, \psi \rangle = \langle \nabla_{e_i} e(\omega^i)\phi, \psi\rangle + \langle e(\omega^i)\phi, \nabla_{e_i} \psi \rangle,\]
 +and moreover that
 +\[ \nabla_{e_i} e(\omega^i) \phi = e(\omega^i) \nabla_{e_i} \phi + e(\nabla_{e_i} \omega^i) \phi = = e(\omega^i) \nabla_{e_i} \phi + e(\nabla_{e_i} e_i) \phi. \]
 +One therefore computes:
 +\begin{align*}
 +\langle \mathrm{d}\phi, \psi\rangle_{L^2} &= \int_M \langle \mathrm{d} \phi, \psi \rangle \mathrm{vol} \\
 +&= \int_M \langle e(\omega^i) \nabla_{e_i} \phi, \psi \rangle \mathrm{vol} \\
 +&= \int_M \left(e_i \langle e(\omega^i), \psi\rangle - \langle e(\nabla_{e_i} e_i) \phi, \psi\rangle - \langle e(\omega^i)\phi, \nabla_{e_i} \psi\rangle\right) \mathrm{vol}.
 +\end{align*}
 +The last term is the one we want to survive; so we hope to show that
 +\[ \left(e_i \langle e(\omega^i), \psi\rangle - \langle e(\nabla_{e_i} e_i\rangle\right)\mathrm{vol} \]
 +is exact.
exterior_derivative.1662060385.txt.gz · Last modified: by spencer