dirichlet_energy
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| dirichlet_energy [2022/09/05 05:43] – spencer | dirichlet_energy [2022/09/05 05:44] (current) – [Euler-Lagrange equations] spencer | ||
|---|---|---|---|
| Line 18: | Line 18: | ||
| Consider a family of maps $u_t \in C^2(M,N)$ such that $u_0 = u$. | Consider a family of maps $u_t \in C^2(M,N)$ such that $u_0 = u$. | ||
| Let $U : \mathbb{R} \times M \to N$ be the map defined by $U(t,x) = u_t(x)$. | Let $U : \mathbb{R} \times M \to N$ be the map defined by $U(t,x) = u_t(x)$. | ||
| - | Let $\nabla_{\partial/\partial | + | Let $\nabla_{\mathrm{d}/\mathrm{d}t}$ be the covariant derivative, and then compute on a vector field $X$ on $M$: |
| \begin{align*} | \begin{align*} | ||
| - | (\nabla_{\partial/\partial | + | (\nabla_{\mathrm{d}/\mathrm{d} |
| - | &= \nabla_{\partial/\partial | + | &= \nabla_{\mathrm{d}/\mathrm{d}t}(\mathrm{d}U \cdot X) - 0\\ |
| - | &= \nabla_X (\mathrm{d}U \cdot \partial/\partial | + | &= \nabla_X (\mathrm{d}U \cdot \mathrm{d}/\mathrm{d} |
| &= \nabla_X \frac{\partial U}{\partial t} + 0. | &= \nabla_X \frac{\partial U}{\partial t} + 0. | ||
| \end{align*} | \end{align*} | ||
dirichlet_energy.1662370984.txt.gz · Last modified: by spencer
