User Tools

Site Tools


commutator_relations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
commutator_relations [2023/06/07 13:54] – [Connections] spencercommutator_relations [2023/06/07 13:55] (current) spencer
Line 3: Line 3:
 ==== Exterior and Interior products ==== ==== Exterior and Interior products ====
  
- - For forms $\alpha, \beta$, $e^*(\alpha)e(\beta) = e(e^*(\alpha)\beta) + (-1)^{|\alpha|} e(\beta) e^*(\alpha)$. Using $[x, y]_g$ for the graded commutator $xy - (-1)^{|x|}yx$, then $[e^*(\alpha), e(\beta)]_g = e(e^*(\alpha)\beta)$. In particular, for the 1-forms $\omega^i$ we have $e^*(\omega^i) e(\omega^j) + e(\omega^j) e^*(\omega^i) = 0$ for $i \neq j$, and is the identity otherwise.+    - For forms $\alpha, \beta$, $e^*(\alpha)e(\beta) = e(e^*(\alpha)\beta) + (-1)^{|\alpha|} e(\beta) e^*(\alpha)$. Using $[x, y]_g$ for the graded commutator $xy - (-1)^{|x|}yx$, then $[e^*(\alpha), e(\beta)]_g = e(e^*(\alpha)\beta)$. In particular, for the 1-forms $\omega^i$ we have $e^*(\omega^i) e(\omega^j) + e(\omega^j) e^*(\omega^i) = 0$ for $i \neq j$, and is the identity otherwise.
  
 ==== Connections ==== ==== Connections ====
commutator_relations.1686160493.txt.gz · Last modified: by spencer