User Tools

Site Tools


commutator_relations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
commutator_relations [2002/01/10 22:48] – created spencercommutator_relations [2023/06/07 13:55] (current) spencer
Line 3: Line 3:
 ==== Exterior and Interior products ==== ==== Exterior and Interior products ====
  
- - For forms $\alpha, \beta$, $e^*(\alpha)e(\beta) = e(e^*(\alpha)\beta) + (-1)^{|\alpha|} e(\beta) e^*(\alpha)$. Using $[x, y]_g$ for the graded commutator $xy - (-1)^{|x|}yx$, then $[e^*(\alpha), e(\beta)]_g = e(e^*(\alpha)\beta)$. In particular, for the 1-forms $\omega^i$ we have $e^*(\omega^i) e(\omega^j) + e(\omega^j) e^*(\omega^i) = 0$ for $i \neq j$, and is the identity otherwise.+    - For forms $\alpha, \beta$, $e^*(\alpha)e(\beta) = e(e^*(\alpha)\beta) + (-1)^{|\alpha|} e(\beta) e^*(\alpha)$. Using $[x, y]_g$ for the graded commutator $xy - (-1)^{|x|}yx$, then $[e^*(\alpha), e(\beta)]_g = e(e^*(\alpha)\beta)$. In particular, for the 1-forms $\omega^i$ we have $e^*(\omega^i) e(\omega^j) + e(\omega^j) e^*(\omega^i) = 0$ for $i \neq j$, and is the identity otherwise.
  
 ==== Connections ==== ==== Connections ====
  
- - At the center of a nice frame, $\nabla_{\alpha} e(\omega^i) = e(\omega^i\nabla_\alpha$; that is, $[\nabla, e(\omega^i)0$.+The point of all these identities is the maxim of 'apply Leibniz everywhere possible'
 +For example, to compute the value of the connection on 1-form $\alpha$we pick an arbitrary vector $v$ and vector field $X$ to get 
 +$$\nabla_X (\alpha(v)) = (\nabla_X \alpha)(v\alpha (\nabla_X v)$$ 
 +then use that $\nabla = d$ on functions to rewrite as  
 +$$(\nabla_X \alpha)(v) = X(\alpha(v)) - \alpha(\nabla_X v).$
 +This is the best way to figure these identities out on the fly and remember signs.
  
- - Generally, $\nabla_\alpha e(\omega^i) = e(\omega^i) \nabla_\alpha + e^*(\nabla_\alpha \omega^i)$. +    - At the center of a nice frame, $\nabla_{\alpha} e(\omega^i) = e(\omega^i) \nabla_\alpha$; that is, $[\nabla, e(\omega^i)] = 0$. 
- +    - Generally, $\nabla_\alpha e(\omega^i) = e(\omega^i) \nabla_\alpha + e^*(\nabla_\alpha \omega^i)$. 
- - The curvature tensor is $[\nabla_X, \nabla_Y] - \nabla_{[X,Y]}= F(X,Y)$. If $X, Y$ are coordinate vector fields (e.g. in a geodesic coordinate frame on the tangent bundle) then $[X,Y] = 0$ and $F(X,Y) = [\nabla_X, \nabla_Y]$.+    - The dual version here is $[\nabla_\alpha, e^*(\omega^i)] = e^*(\nabla_\alpha \omega^i)$. 
 +    - The curvature tensor is $[\nabla_X, \nabla_Y] - \nabla_{[X,Y]}= F(X,Y)$. If $X, Y$ are coordinate vector fields (e.g. in a geodesic coordinate frame on the tangent bundle) then $[X,Y] = 0$ and $F(X,Y) = [\nabla_X, \nabla_Y]$.
commutator_relations.1010720891.txt.gz · Last modified: by spencer