bochner_identity
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| bochner_identity [2022/08/31 18:33] – spencer | bochner_identity [2022/08/31 18:57] (current) – spencer | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Bochner Identity ====== | ====== Bochner Identity ====== | ||
| - | Let $u \in C^2(M,N)$ be a [[harmonic_map|harmonic map]] | + | Let $u \in C^2(M,N)$ be a [[harmonic_map|harmonic map]]. |
| + | Let $\mathrm{Rm}_N$ denote the Riemann curvature 4-tensor on $N$, $\mathrm{Ric}_M$ the Ricci curvature tensor on $M$, and $\Delta_g$ the Laplace–Beltrami operator on $M$. | ||
| + | Then the //Bochner identity// is satisfied: | ||
| + | \[ \Delta_g e(u) = |\nabla (\mathrm{d}u)|^2 + \langle \mathrm{Ric}_M, | ||
| + | In this formula, $\nabla (\mathrm{d}u) \in \Gamma(T^* M \otimes T^* M \otimes u^*TN)$ is the covariant derivative of the pushforward $\mathrm{d}u$ when one thinks of it as a 1-form with values in the bundle $u^*TN$ equipped with its usual connection (the pullback of the Levi-Civita connection). That is, it is the Hessian of the map $u$. | ||
| + | Both $\mathrm{Ric}_M, | ||
| + | Finally, $\mathrm{scal}_g (u^*\mathrm{Rm}_N)$ indicates a full trace with $g$ of the pullback of the Riemann curvature tensor on $N$. | ||
| + | Explicitly, if $\{e_i\}_{i=1}^n$ are an orthonormal basis of $T_p M$ at some point in $M$, then | ||
| + | \[ (u^*\mathrm{Rm}_N)(e_i, | ||
| + | and | ||
| + | \[ \mathrm{scal}_g (u^* \mathrm{Rm}_N) = g^{ik} g^{j\ell} R_{ijk\ell}. \] | ||
bochner_identity.1661985202.txt.gz · Last modified: by spencer
