User Tools

Site Tools


bochner_identity

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bochner_identity [2022/08/31 18:33] spencerbochner_identity [2022/08/31 18:57] (current) spencer
Line 1: Line 1:
 ====== Bochner Identity ====== ====== Bochner Identity ======
  
-Let $u \in C^2(M,N)$ be a [[harmonic_map|harmonic map]]+Let $u \in C^2(M,N)$ be a [[harmonic_map|harmonic map]]. 
 +Let $\mathrm{Rm}_N$ denote the Riemann curvature 4-tensor on $N$, $\mathrm{Ric}_M$ the Ricci curvature tensor on $M$, and $\Delta_g$ the Laplace–Beltrami operator on $M$. 
 +Then the //Bochner identity// is satisfied: 
 +\[ \Delta_g e(u) = |\nabla (\mathrm{d}u)|^2 + \langle \mathrm{Ric}_M, u^* h\rangle - \mathrm{scal}_g (u^* \mathrm{Rm}_N). \] 
 +In this formula, $\nabla (\mathrm{d}u) \in \Gamma(T^* M \otimes T^* M \otimes u^*TN)$ is the covariant derivative of the pushforward $\mathrm{d}u$ when one thinks of it as a 1-form with values in the bundle $u^*TN$ equipped with its usual connection (the pullback of the Levi-Civita connection). That is, it is the Hessian of the map $u$. 
 +Both $\mathrm{Ric}_M, u^*h$ are $(2,0)$-tensors on $M$, and the inner product is the one induced by $g$. 
 +Finally, $\mathrm{scal}_g (u^*\mathrm{Rm}_N)$ indicates a full trace with $g$ of the pullback of the Riemann curvature tensor on $N$. 
 +Explicitly, if $\{e_i\}_{i=1}^n$ are an orthonormal basis of $T_p M$ at some point in $M$, then 
 +\[ (u^*\mathrm{Rm}_N)(e_i,e_j,e_k,e_\ell) = \mathrm{Rm}_N(u_* e_i, u_* e_j, u_* e_k, u_* e_\ell) A_{ijk\ell}, \] 
 +and  
 +\[ \mathrm{scal}_g (u^* \mathrm{Rm}_N) = g^{ik} g^{j\ell} R_{ijk\ell}. \]
  
bochner_identity.1661985202.txt.gz · Last modified: by spencer